1,002 research outputs found

    Enhanced Eddy Activity in the Beaufort Gyre in Response to Sea Ice Loss

    Get PDF
    The Beaufort Gyre freshwater content has increased since the 1990s, potentially stabilizing in recent years. The mechanisms proposed to explain the stabilization involve either mesoscale eddy activity that opposes Ekman pumping or the reduction of Ekman pumping due to reduced sea ice?ocean surface stress. However, the relative importance of these mechanisms is unclear. Here, we present observational estimates of the Beaufort Gyre mechanical energy budget and show that energy dissipation and freshwater content stabilization by eddies increased in the late-2000s. The loss of sea ice and acceleration of ocean currents after 2007 resulted in enhanced mechanical energy input but without corresponding increases in potential energy storage. To balance the energy surplus, eddy dissipation and its role in gyre stabilization must have increased after 2007. Our results imply that declining Arctic sea ice will lead to an increasingly energetic Beaufort Gyre with eddies playing a greater role in its stabilization

    Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014

    Get PDF
    Arctic sea surface height (SSH) is poorly observed by radar altimeters due to the poor coverage of the polar oceans provided by conventional altimeter missions and because large areas are perpetually covered by sea ice, requiring specialized data processing. We utilize SSH estimates from both the ice-covered and ice-free ocean to present monthly estimates of Arctic Dynamic Ocean Topography (DOT) from radar altimetry south of 81.5°N and combine this with GRACE ocean mass to estimate steric height. Our SSH and steric height estimates show good agreement with tide gauge records and geopotential height derived from Ice-Tethered Profilers. The large seasonal cycle of Arctic SSH (amplitude ∼5 cm) is dominated by seasonal steric height variation associated with seasonal freshwater fluxes, and peaks in October–November. Overall, the annual mean steric height increased by 2.2 ± 1.4 cm between 2003 and 2012 before falling to circa 2003 levels between 2012 and 2014 due to large reductions on the Siberian shelf seas. The total secular change in SSH between 2003 and 2014 is then dominated by a 2.1 ± 0.7 cm increase in ocean mass. We estimate that by 2010, the Beaufort Gyre had accumulated 4600 km3 of freshwater relative to the 2003–2006 mean. Doming of Arctic DOT in the Beaufort Sea is revealed by Empirical Orthogonal Function analysis to be concurrent with regional reductions in the Siberian Arctic. We estimate that the Siberian shelf seas lost ∼180 km3 of freshwater between 2003 and 2014, associated with an increase in annual mean salinity of 0.15 psu yr−1. Finally, ocean storage flux estimates from altimetry agree well with high-resolution model results, demonstrating the potential for altimetry to elucidate the Arctic hydrological cycle

    Large-x Parton Distributions

    Get PDF
    Reliable knowledge of parton distributions at large x is crucial for many searches for new physics signals in the next generation of collider experiments. Although these are generally well determined in the small and medium x range, it has been shown that their uncertainty grows rapidly for x>0.1. We examine the status of the gluon and quark distributions in light of new questions that have been raised in the past two years about "large-x" parton distributions, as well as recent measurements which have improved the parton uncertainties. Finally, we provide a status report of the data used in the global analysis, and note some of the open issues where future experiments, including those planned for Jefferson Labs, might contribute.Comment: LaTeX, 9 pages, 7 figures. Invited talk presented at the ``Workshop on Nucleon Structure in the High x-Bjorken Region (HiX2000),'' Temple University, Philadelphia, Pennsylvania, March 30-April 1, 200

    Separable approximation for mixed states of composite quantum systems

    Get PDF
    We describe a purely algebraic method for finding the best separable approximation to a mixed state of a composite 2x2 quantum system, consisting of a decomposition of the state into a linear combination of a mixed separable part and a pure entangled one. We prove that, in a generic case, the weight of the pure part in the decomposition equals the concurrence of the state.Comment: 13 pages, no figures; minor changes; accepted for publication in PR

    Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability

    Get PDF
    Differences in resource use or in tolerances to abiotic conditions are often invoked as potential mechanisms underlying the sympatric distribution of cryptic species. Additionally, the microbiome can provide physiological adaptations of the host to environmental conditions. We determined the intra-and interspecific variability of the microbiomes of three cryptic nematode species of the Litoditis marina species complex that co-occur, but show differences in abiotic tolerances. Roche 454 pyrosequencing of the microbial 16S rRNA gene revealed distinct bacterial communities characterized by a substantial diversity (85-513 OTUs) and many rare OTUs. The core microbiome of each species contained only very few OTUs (2-6), and four OTUs were identified as potentially generating tolerance to abiotic conditions. A controlled experiment in which nematodes from two cryptic species (Pm1 and Pm3) were fed with either an E. coli suspension or a bacterial mix was performed, and the 16S rRNA gene was sequenced using the MiSeq technology. OTU richness was 10-fold higher compared to the 454 data set and ranged between 1118 and 7864. This experiment confirmed the existence of species-specific microbiomes, a core microbiome with few OTUs, and high interindividual variability. The offered food source affected the bacterial community and illustrated different feeding behaviour between the cryptic species, with Pm3 exhibiting a higher degree of selective feeding than Pm1. Morphologically similar species belonging to the same feeding guild (bacterivores) can thus have substantial differences in their associated microbiomes and feeding strategy, which in turn may have important ramifications for biodiversity-ecosystem functioning relationships

    Coping with a changing environment: The effects of early life stress

    Get PDF
    Ongoing rapid domestication of Atlantic salmon implies that individuals are subjected to evolutionarily novel stressors encountered under conditions of artificial rearing, requiring new levels and directions of flexibility in physiological and behavioural coping mechanisms. Phenotypic plasticity to environmental changes is particularly evident at early life stages. We investigated the performance of salmon, previously subjected to an unpredictable chronic stress (UCS) treatment at an early age (10 month old parr), over several months and life stages. The UCS fish showed overall higher specific growth rates compared with unstressed controls after smoltification, a particularly challenging life stage, and after seawater transfer. Furthermore, subjecting fish to acute stress at the end of the experiment, we found that UCS groups had an overall lower hypothalamic catecholaminergic and brain stem serotonergic response to stress compared with control groups. In addition, serotonergic activity was negatively correlated with final growth rates, which implies that serotonin responsive individuals have growth disadvantages. Altogether, our results may imply that a subdued monoaminergic response in stressful farming environments may be beneficial, because in such situations individuals may be able to reallocate energy from stress responses into other life processes, such as growth

    Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury

    Get PDF
    Background: High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Methods: Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Results: Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p < 0.001). Eed increased over time in all groups except for the rats receiving low tidal volume ventilation without LPS (p = 0.223). A significant interaction (p < 0.001) was found between tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Conclusions: Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well

    Changes in water temperature and oxygen: the effect of triploidy on performance and metabolism in large farmed Atlantic salmon

    Get PDF
    In salmon farming, the use of sterile triploids (3N) can mitigate the problem of escapees interbreeding with wild salmon. However, triploid salmon appear less tolerant to high water temperatures and low oxygen levels compared to diploids (2N). To investigate how the thermal performance and physiology of large (2.5 kg) triploid Atlantic salmon Salmo salar L. differs from those of diploids, both ploidies were subjected to water temperatures between 3 and 18°C. The fish were exposed to reduced oxygen saturations (O2 sat, 70%), termed hypoxia, at 6 and 18°C. Triploids fed more than diploids between 3 and 9°C and at similar levels at 12°C. At 15°C, the feed intake significantly dropped in both ploidies, although more in triploids. During hypoxia, feed intake was higher in triploids at 6°C and equal to diploids at 18°C. The overall feed conversion ratio was similar between ploidies. Muscle energy phosphates were generally lower in triploids than diploids, while muscle glucose, blood haemoglobin and haematocrit were lower in triploids than diploids at ≥12°C. Plasma lactate levels tended to be higher in triploids and increased with increasing temperature and at hypoxia in both ploidies. Plasma cortisol increased in both ploidies at high temperatures and was highest in triploids under hypoxic conditions at 18°C. Triploids had a higher cataract score at the start of the experiment and developed more cataracts throughout the experiment. The present findings show that large triploid Atlantic salmon perform better at colder water temperatures compared to diploids and differ in parts of their physiological expression at increasing and high temperature.publishedVersio
    • …
    corecore